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Released to the public by its author in 2016, it remains responsible 
for some of the most damaging and widely publicized DDoS  
attacks on the internet. 
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Mirai is an IoT botnet  
that was designed to 
exploit vulnerabilities  
in poorly secured IoT  
devices for use in large-
scale DDoS attacks.

The threat of Mirai continues to change the 
security landscape in significant ways. When 
initially released, Mirai was a large botnet 
capable of incredibly large attacks because  
it maintained a large bot count. Today, Radware 
witnesses factions of smaller Mirai botnets 
rather than a few large ones. As more people 
understand how to run it, more people are 
competing for the pool of devices. In addition, 
botnets like BrickerBot and Hajime eliminate 
vulnerable devices from the available 
infection pool.

Perhaps the most compelling aspect of Mirai 
was the public release of the source code. Upon 
release, anyone, anywhere, could create their 
own botnet. With the source code available and 
instructions clearly documented, new threat 
actors had an existing framework that they 
could modify by adding code for new vectors  
or additional behavior to the botnets.

This has happened. Although Mirai is several 
years old now, it is still active in its original form 
in addition to modern variants. Botnets such  
as Masuta, Owari, DaddysMirai and Orion all 
include Mirai attack code. Evidence also suggests 
that other IoT botnets like IoT_Reaper/IoTroop 
and Satori are based on the Mirai framework, 
albeit different approaches. 

Most importantly, Mirai underscores the  
potential of IoT as a DDoS attack tool and  
how vulnerable poorly secured devices are. 

INTRODUCTION

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html


Not all IoT devices are susceptible to Mirai 
infection. In fact, it can be difficult to achieve and 
maintain infection of a device. Even if a device 
can be infected and join a Mirai botnet, many 
devices behave differently once enslaved. For 
example, some devices crash and reboot once 
they are issued an attack command, which 
flushes Mirai from its system. In another 
example, it was observed that certain variables, 
like source or destination IP, could not be accu-
rately implemented by a specific device, thus 
sending the attack to the wrong destination. 

This handbook is a study of the original Mirai 
attack vectors and some of its variants. Each  
of the attacks is dissected in a lab environment, 
allowing the reader to discover the flexibility  
of each one. The intent is for the reader to 
become familiar with each attack vector, 
understand its profile and parameters, and think 
about how to defend against each of these 
attacks if needed.

THE INFAMOUS MIRAI BOTNET was responsible for some of the 
largest and most distributive DDoS attacks in recent history,  
including an attack against security journalist Brian Krebs’ website, 
French web host OVH, and DNS provider Dyn. Commandeering 
hundreds of thousands of IoT devices, it sent shock waves through 
the security marketplace with traffic volumes exceeding 1Tbps.

UNDER  
ATTACK
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01	 MIRAI OVERVIEW

The original Mirai code includes 10 types of attacks,  
and each is configurable with several variables.

Many of these attack vectors are based on traditional 
DDoS attack types but have been customized and/or 
enhanced for use in Mirai.

There are two more attacks partially written in the code (Proxy and CFNull), but they were 
not finished.

The platform was written to allow for multitenancy and transactional access. Once the  
C2 server and botnet are established, additional users can be added to the platform.  
This means that public botnet access is as simple as a business transaction.

greeth: GRE Ethernet flood

http: HTTP flood

dns: DNS resolver flood using the targets domain;  
input IP is ignored

syn: SYN flood

greip: GRE IP flood

stomp: TCP stomp flood

udpplain: UDP flood with less options, optimized for higher PPS

udp: UDP flood

vse: Valve source engine specific flood

ack: ACK flood

1: TCP: SYN, ACK, STOMP

2: UDP: UDP, VSE, DNS, UDPPLAIN

3: GRE: GREIP, GREETH

4: APP: HTTP

There are four  
classifications of  
attacks in the original  
source code. 
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Users accounts are added (figure 1) from the C2 console, and users are provided with 
several options, such as how many bots they may control, their maximum attack duration  
(seconds) and how long they must wait between attacks (seconds).

LAB ATTACKERS
Raspberry Pi 3 devices running Raspbian (Stretch) were chosen as the Mirai botnet 
members for this analysis. Raspbian is a Debian-based version of Linux built for the 
Raspberry Pi. Neither Raspberry Pi nor Raspbian are known to be vulnerable to Mirai. 
Rather, Mirai was manually loaded onto the Pis in the lab and run in debug mode 
for the purpose of this research.

It was observed that IoT devices in the lab exhibited similar behavior to the Pis in terms of 
relative attack rates (BPS/PPS ratios for different vectors were similar), but the Raspberry 
Pi 3s were more flexible in a lab environment and created much larger attacks per device. 
Not only are the Pis more powerful than other lab IoT devices because of RAM and CPU, 
but they also don’t crash unexpectedly like IoT devices can.

Execution is the same with the Raspberry Pi devices in this environment as with IoT 
devices in the wild, with the exception that the loader process was not used to infect the 
Pis. Instead, Mirai is manually executed upon startup. Nevertheless, the Pi devices are 
under the control of the C2 server and attacks are launched from the C2 server 
just as they are in the wild.

This analysis also includes a brief comparison of the Mirai and Owari botnet attacks. The 
Owari tests were run from real IP cameras under the control of a lab Owari botnet. Owari 
code does not include a debug mode, and it was not considered an accurate comparison 
to run individually compiled Owari attacks on the Pis. When comparing C2-based attacks 
to manually compiled attacks, the manual attacks are more aggressive and thus not a 
fair comparison.

User  
added  
sucessfully||

FIGURE 1: 
ADDING USERS  
ON THE MIRAI 
CONSOLE		
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THREAT RANKING
In the following analysis, each Mirai vector is sequentially ranked against its counterparts. 
The method for the score was based on attack velocity (BPS, PPS or both), its default 
behavior (an attack that is not specifically crafted), and other factors.

The attacks are individually ranked on a scale from 10 to one (10 is the most threatening 
attack). The ranking does not necessarily imply that a score of 10 is a significantly greater 
threat than a score of one, but rather that each attack is a significant threat that has been 
crafted to achieve a significant, custom result.

The score for each Mirai vector is based on the Pi bot behavior in the lab rather than IoT 
devices. Sometimes IoT devices exhibited different behavior than the Pi bots, but overall 
behavior is similar.

It is known that servers are also used as Mirai bots in the wild, similar to how Pis were 
used in the lab for this analysis. Servers are clearly more capable and dangerous, so the 
Pi behavior compared to IoT device behavior is considered relevant.

The attacks are individually ranked  
on a scale from 10 to one (10 is the  
most threatening attack). 

10>>>1
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DNS

DNS

The DNS attack included in Mirai is an  
interesting attack and probably the most 
notable due to the high-profile attacks it was 
used in. Mirai is not the first time this attack 
was seen in the wild, but it is likely that  
the first time it was included was in an  
IoT botnet, which added critical damage  
potential. Figure 2 shows the control  
parameters of the attack.

Notice that the attacker must specify the domain being attacked. In this attack, the IP 
address specified in the syntax isn’t even used. Instead, the bot generates a DNS query 
flood at the domain specified.

The attack itself is a query flood of random subdomains within the specified domain,  
in the format of $STRING.domain.com. 

The IoT device sends this request to its local recursive DNS server. The request is likely 
hitting something inside of its local network first. Perhaps it’s a local recursive server or 
maybe it’s a local router that’s also proxying DNS requests.

FIGURE 2: 
MIRAI CONSOLE 
FOR THE DNS  
ATTACK		
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CHARACTERISTICS

PROTOCOL: UDP

BANDWIDTH PROFILE:  Medium BPS, High PPS

PACKET SIZE:  Small (93 bytes)

NOTES: � �Very difficult attack to defend against  
without specific tools

THREAT RANKING: 10
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The device floods the DNS server with A-record lookups for $STRING.domain.com. In the example below, devices are flooding 
192.168.3.4 with lookups for $STRING.example.com.

11:10:43.697367 IP 192.168.3.114.34569 > 192.168.3.4.53: 11725+ A? t0b18p0cdblw.example.com. (45)
11:10:43.698271 IP 192.168.3.112.41054 > 192.168.3.4.53: 18327+ A? h5rjw6dgfaat.example.com. (45)
11:10:43.698885 IP 192.168.3.115.57475 > 192.168.3.4.53: 951+ A? j4nntpv8fvtq.example.com. (45)
11:10:43.700153 IP 192.168.3.115.62723 > 192.168.3.4.53: 52021+ A? vbulfqmk4mr8.example.com. (45)
11:10:43.700775 IP 192.168.3.114.37722 > 192.168.3.4.53: 21143+ A? 8bc36jfnl0jg.example.com. (45)
11:10:43.701182 IP 192.168.3.113.14438 > 192.168.3.4.53: 65156+ A? pofmdmft5bej.example.com. (45)

The local server doesn’t have this record cached, so it forwards the lookup request to the authoritative name server for the domain. 
In this example, 192.168.2.53 is the authoritative name server for domain “example.com,” so 192.168.3.4 forwards the request to it.

11:09:47.241041 IP 192.168.3.4.57781 > 192.168.2.53.53: 63948+% [1au] A? qp17vht88mgj.example.com. (56)

11:09:47.241168 IP 192.168.3.4.49960 > 192.168.2.53.53: 5832+% [1au] A? 56j7gru4r368.example.com. (56)

11:09:47.241553 IP 192.168.3.4.51086 > 192.168.2.53.53: 54527+% [1au] A? lkark163wqlo.example.com. (56)

11:09:47.241762 IP 192.168.3.4.34301 > 192.168.2.53.53: 37060+% [1au] A? dlg5uwouw7lb.example.com. (56)

11:09:47.241998 IP 192.168.3.4.51425 > 192.168.2.53.53: 13561+% [1au] A? 8prf8ffbt7qh.example.com. (56)

11:09:47.242219 IP 192.168.3.4.38028 > 192.168.2.53.53: 57721+% [1au] A? oeinrrct1bc5.example.com. (56)

This is where the attack scales incredibly. Suddenly, the authoritative DNS server for the domain is under a flood of queries  
from real DNS servers on the internet. Can the victim simply block all DNS requests from real servers around the internet?  
Not if they want to stay online for legitimate queries.

This vector is very difficult to defend against 
without the appropriate tools. An organization 
cannot simply block port 53 and cannot block 
the source IP. It requires getting inside the 
payload of the query and mitigating the attack 
from there by blocking only the randomized 
subdomains. Authoritative

Name Server for 
example.com

 (Target)

A? t0b18p0cdblw.example.com

A? h5rjw6dgfaat.example.com

A? j4nntpv8fvtq.example.com

A? vbulfqmk4mr8.example.com

A? 8bc36jfnl0jg.example.com

A? pofmdmft5bej.example.com

ISP 1
Recursive Name Server

ISP 2
Recursive Name Server

ISP 3
Recursive Name Server

FIGURE 3: 
TOPOLOGY  
OF THE MIRAI  
DNS ATTACK		

The DNS attack is a very high packets 
per second (PPS) attack. Under load,  
you can expect it to exhaust link through-
put from PPS before it exhausts bits per 
second (BPS). Be sure to monitor the 
PPS rate if you see this attack because  
if you are only monitoring BPS, it might 
appear that you have more available 
bandwidth than you actually do.

C
A

U
T
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N
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VSE

DNS

There is a fascinating relationship with  
online gaming and DDoS. Online gaming 
has long been at the center of attacks,  
and it can be argued that the proliferation  
of DDoS tools and techniques can be  
somewhat attributed to this space.  
Simply put, people have been regularly  
and creatively attacking game servers  
for years.

The Valve Source Engine attack is specially crafted for servers that run certain games 
from the developer Valve Corporation. These online multiplayer games are built on a 
software framework (or a game engine) called “Source,” which is responsible for things 
like rendering images, sounds, gameplay, networking, etc.

A Valve game server running the Source engine is specifically vulnerable to this attack. 
Valve Corporation is responsible for a number of well-known games, including Half-Life, 
Team Fortress 2, and Counter-Strike: Global Offensive, as well as others that run the 
Source engine.1

Anyone can run servers for these games, so it’s not an attack on Valve themselves. In the 
example below, you can see a game client connect to a Valve game server on a private 
LAN. When the game server starts, it listens for player connections on UDP port 27015.

$ netstat -ln | grep 27015
tcp        0      0 127.0.1.1:27015		 0.0.0.0:*               LISTEN
udp        0      0 0.0.0.0:27015		 0.0.0.0:*
$

New players wanting to connect to the server will do so on UDP/27015.

21:12:47.027872 IP 192.168.1.252.60814 > 192.168.3.11.27015: UDP, length 25
21:12:47.028006 IP 192.168.1.252.60815 > 192.168.3.11.27015: UDP, length 25
21:12:47.028019 IP 192.168.1.252.60816 > 192.168.3.11.27015: UDP, length 25
21:12:47.028028 IP 192.168.1.252.60817 > 192.168.3.11.27015: UDP, length 25

1https://en.wikipedia.org/wiki/Source_(game_engine)#Games_using_Source
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CHARACTERISTICS

PROTOCOL: UDP

BANDWIDTH PROFILE:  Medium BPS, High PPS

PACKET SIZE:  Small (67 bytes)

NOTES: � �Built to target game platforms; however, it is a high PPS  
attack that could be used on other targets

THREAT RANKING: 9

https://en.wikipedia.org/wiki/Source_(game_engine)#Games_using_Source
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All subsequent traffic happens on this predetermined port throughout the game. The 
problem is that these servers must listen on their defined port and will usually allow 
incoming connections from any IP address. It’s true that the server operator can change 
the port, but those attacking the network likely already know which port the game is 
running on, so they can simply change the attack destination.

The result is that it’s difficult to distinguish between legitimate UDP connection attempts  
and illegitimate ones. While the server can whitelist or only permit specific IP addresses  
if desired, IoT-based DDoS attacks will quickly overrun a server with volume and packets  
per second (PPS), rendering it useless if unprotected upstream. Here are the control 
parameters of the attack:

With the most basic syntax, the attack looks like this:

14:36:33.888087 IP 192.168.3.115.64420 > 192.168.3.10.27015: UDP, length 25
14:36:33.888469 IP 192.168.3.113.30051 > 192.168.3.10.27015: UDP, length 25
14:36:33.888839 IP 192.168.3.112.49586 > 192.168.3.10.27015: UDP, length 25
14:36:33.889197 IP 192.168.3.115.4447 > 192.168.3.10.27015: UDP, length 25
14:36:33.889551 IP 192.168.3.114.29292 > 192.168.3.10.27015: UDP, length 25

This is identical to real queries when clients join the game because it’s a real Source 
Engine Query that is generated by the attacker.

FIGURE 4: 
MIRAI CONSOLE 
FOR THE VSE  
ATTACK		

FIGURE 5: 
VSE ATTACK  
PAYLOAD		

The VSE attack is a very high packets per second (PPS) attack. Under load,  
it can be expected to exhaust link throughput from PPS before it exhausts bits 
per second (BPS). Monitor the PPS rate if you see this attack because if you are 
only monitoring BPS, it might appear that you have more available bandwidth 
than you actually do.C
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STOMP

DNS

The TCP STOMP attack is one of the more 
interesting attacks in Mirai. In fact, it was 
reportedly designed to defeat certain DDoS 
mitigation techniques because it is an 
in-session attack. 

The intent of the attack is to establish a three-way TCP handshake, after which  
the attacking nodes send an ACK Flood within their session that has already been  
whitelisted by protection sets.

Here are the control parameters of the attack:

FIGURE 6: 
MIRAI CONSOLE 
FOR THE STOMP 
ATTACK		
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CHARACTERISTICS

PROTOCOL: TCP

BANDWIDTH PROFILE:  High BPS (highest of all Pi bot attacks), Low PPS

PACKET SIZE:  Largest of all vectors (822 bytes)

NOTES: � �Default behavior creates an out-of-state condition

THREAT RANKING:   8
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The session setup looks like this, with a three-way handshake between 192.168.3.111 (attacker) and 192.168.3.10 (target).

20:21:50.255975 IP 192.168.3.111.50114 > 192.168.3.10.80: Flags [S], seq 1984590386, win 29200, options [mss 1460,sackOK,TS val 17639602 ecr 0,nop,wscale 7], length 0
20:21:50.256113 IP 192.168.3.10.80 > 192.168.3.111.50114: Flags [S.], seq 518524438, ack 1984590387, win 28960, options [mss 1460,sackOK,TS val 17639394 ecr 
17639602,nop,wscale 7], length 0

20:21:50.256763 IP 192.168.3.111.50114 > 192.168.3.10.80: Flags [.], ack 1, win 229, options [nop,nop,TS val 17639602 ecr 17639394], length 0

The very next packet in the transaction is the attacker trying to send a PSH+ACK flood to the target.

20:21:50.257249 IP 192.168.3.111.40933 > 192.168.3.10.80: Flags [P.], seq 2481258496:2481259252, ack 467992576, win 42962, options [[bad opt]
20:21:50.257304 IP 192.168.3.10.80 > 192.168.3.111.40933: Flags [R], seq 467992576, win 0, length 0
20:21:50.257497 IP 192.168.3.111.40933 > 192.168.3.10.80: Flags [P.], seq 65536:66292, ack 1, win 42962, options [[bad opt]
20:21:50.257536 IP 192.168.3.10.80 > 192.168.3.111.40933: Flags [R], seq 467992576, win 0, length 0
20:21:50.257631 IP 192.168.3.111.40933 > 192.168.3.10.80: Flags [P.], seq 131072:131828, ack 1, win 42962, options [[bad opt]
20:21:50.257664 IP 192.168.3.10.80 > 192.168.3.111.40933: Flags [R], seq 467992576, win 0, length 0
20:21:50.257884 IP 192.168.3.111.40933 > 192.168.3.10.80: Flags [P.], seq 196608:197364, ack 1, win 42962, options [[bad opt]
20:21:50.257920 IP 192.168.3.10.80 > 192.168.3.111.40933: Flags [R], seq 467992576, win 0, length 0

However, notice that the attacker switched to the source port of 40933 once the three-way handshake was complete. Although it is intended to be an in-session attack,  
this is technically out-of-state, and an OOS protection should detect this anomaly. Remember that the Mirai code is easily modifiable, and this behavior can change.

It should be noted that the original Mirai code does not allow for a source port to be defined, so unless the code is modified, OOS protections should defeat this attack.

mirai-user@botnet# stomp 192.168.3.10 120 sport=1234
Invalid flag key sport, near sport=1234
mirai-user@botnet#

Finally, this is an incredibly high BPS attack (the highest BPS using Raspberry Pi bots). This attack can easily threaten a target with volumetric capacity alone.
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GREETH

DNS

The GREETH attack is interesting and  
also mysterious. The payload of the attack 
includes Transparent Ethernet Bridging  
over GRE-encapsulated packets. The  
behavior of the attack is similar to the 
GREIP attack, but it also includes an  
L2 frame.

Here are the control parameters of the attack:

FIGURE 7: 
MIRAI CONSOLE 
FOR THE  
GREETH ATTACK	
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CHARACTERISTICS

PROTOCOL: GRE

BANDWIDTH PROFILE:  Profile: High BPS, Medium PPS

PACKET SIZE:  Medium (592 bytes)

NOTES: � �Payload is Layer 2 Ethernet frames  
(Transparent Ethernet Bridging)

THREAT RANKING: 7
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The control parameters are the same as GREIP, and despite the attack including a L2 payload,  
the attacker doesn’t have control over the L2 contents.

On its own, it doesn’t look much different in a TCPdump than the GREIP attack, aside from the  
slightly larger packet length (558 bytes instead of 544 bytes in GREIP).

22:00:37.053928 IP 192.168.3.115 > 192.168.3.10: GREv0, length 558: IP 9.216.137.67.30513 > 
248.6.163.90.16375: UDP, length 512

22:00:37.054838 IP 192.168.3.112 > 192.168.3.10: GREv0, length 558: IP 201.149.87.116.24440 > 
54.45.106.42.19356: UDP, length 512

22:00:37.055294 IP 192.168.3.113 > 192.168.3.10: GREv0, length 558: IP 54.228.144.26.59862 > 
97.157.49.23.27788: UDP, length 512

22:00:37.055747 IP 192.168.3.114 > 192.168.3.10: GREv0, length 558: IP 47.207.20.146.40931 > 
42.71.229.14.52950: UDP, length 512

22:00:37.068051 IP 192.168.3.111 > 192.168.3.10: GREv0, length 558: IP 137.112.84.84.29 > 
162.123.255.65.13701: UDP, length 512

Inspection of the complete payload is required to understand what’s included.  
This is the outer Layer 2 info (the lab bots attacking their target).

Ethernet II, Src: Raspberr _ d6:27:bf (b8:27:eb:d6:27:bf), Dst: AsustekC _ 42:fb:d2 
(2c:4d:54:42:fb:d2)

	 Destination: AsustekC _ 42:fb:d2 (2c:4d:54:42:fb:d2)
       Address: AsustekC _ 42:fb:d2 (2c:4d:54:42:fb:d2)
		 .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default)
       .... ...0 .... .... .... .... = IG bit: Individual address (unicast)
   Source: Raspberr _ d6:27:bf (b8:27:eb:d6:27:bf)
       Address: Raspberr _ d6:27:bf (b8:27:eb:d6:27:bf)
       .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default)
       .... ...0 .... .... .... .... = IG bit: Individual address (unicast)
   Type: IPv4 (0x0800)

This is the outer Layer 3 info (the lab bots attacking their target).

Internet Protocol Version 4, Src: 192.168.3.111, Dst: 192.168.3.10
	 0100 .... = Version: 4
	 .... 0101 = Header Length: 20 bytes (5)
	 Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
		 0000 00.. = Differentiated Services Codepoint: Default (0)
		 .... ..00 = Explicit Congestion Notification: Not ECN-Capable 
Transport (0)

	 Total Length: 578
	 Identification: 0x62e2 (25314)
	 Flags: 0x02 (Don’t Fragment)
		 0... .... = Reserved bit: Not set
		 .1.. .... = Don’t fragment: Set
		 ..0. .... = More fragments: Not set
	 Fragment offset: 0
	 Time to live: 64
	 Protocol: Generic Routing Encapsulation (47)
	 Header checksum: 0x4de1 [validation disabled]
	 [Header checksum status: Unverified]
	 Source: 192.168.3.111
	 Destination: 192.168.3.10
	 [Source GeoIP: Unknown]
	 [Destination GeoIP: Unknown]

This is the beginning of the encapsulated GRE payload.

Generic Routing Encapsulation (Transparent Ethernet bridging)
	 Flags and Version: 0x0000
		 0... .... .... .... = Checksum Bit: No
       .0.. .... .... .... = Routing Bit: No
       ..0. .... .... .... = Key Bit: No
       ...0 .... .... .... = Sequence Number Bit: No
       .... 0... .... .... = Strict Source Route Bit: No
		 .... .000 .... .... = Recursion control: 0
		 .... .... 0000 0... = Flags (Reserved): 0
		 .... .... .... .000 = Version: GRE (0)

	 Protocol Type: Transparent Ethernet bridging (0x6558)
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This is the inner Layer 2 frame.

Ethernet II, Src: a2:81:e5:25:e7:d2 (a2:81:e5:25:e7:d2), Dst: a0:25:58:f9:6f:f5 (a0:25:58:f9:6f:f5)
	 Destination: a0:25:58:f9:6f:f5 (a0:25:58:f9:6f:f5)
        Address: a0:25:58:f9:6f:f5 (a0:25:58:f9:6f:f5)
        .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default)
        .... ...0 .... .... .... .... = IG bit: Individual address (unicast)
	 Source: a2:81:e5:25:e7:d2 (a2:81:e5:25:e7:d2)
		 Address: a2:81:e5:25:e7:d2 (a2:81:e5:25:e7:d2)
		 .... ..1. .... .... .... .... = LG bit: Locally administered address 
		 (this is NOT the factory default)

		 .... ...0 .... .... .... .... = IG bit: Individual address (unicast)
	 Type: IPv4 (0x0800)

This is the inner Layer 3 packet.

Internet Protocol Version 4, Src: 137.112.84.84, Dst: 44.94.226.208
	 0100 .... = Version: 4
	 .... 0101 = Header Length: 20 bytes (5)
	 Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
		 0000 00.. = Differentiated Services Codepoint: Default (0)
		 .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
	 Total Length: 540
	 Identification: 0x8521 (34081)
	 Flags: 0x02 (Don’t Fragment)
		 0... .... = Reserved bit: Not set
		 .1.. .... = Don’t fragment: Set
		 ..0. .... = More fragments: Not set
	 Fragment offset: 0
	 Time to live: 64
	 Protocol: UDP (17)
	 Header checksum: 0xc6bc [validation disabled]
	 [Header checksum status: Unverified]
	 Source: 137.112.84.84
	 Destination: 44.94.226.208
   [Source GeoIP: Unknown]
   [Destination GeoIP: Unknown]

This is the inner Layer 4 protocol.

User Datagram Protocol, Src Port: 62274, Dst Port: 62501
	 Source Port: 62274
	 Destination Port: 62501
	 Length: 520
	 Checksum: 0x3acf [unverified]
	 [Checksum Status: Unverified]
	 [Stream index: 20]

The source and destination MAC addresses are randomly generated 
and are sometimes malformed or illegal.

The GREETH attack is an extremely high velocity attack, both in PPS 
and BPS. In the lab, it’s slightly less PPS than the GREIP attack 
because of the larger packets being generated, but it is ranked 
higher because of the overall BPS and larger packet size.

Remember that GRE is its own protocol. If you’re using 
firewall filters or access lists to help identify or block the 
traffic, remember that it’s not TCP or UDP, and you might 
need to account for GRE specifically in your policy.
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GREIP

DNS

The GREIP attack is an incredibly interesting 
and versatile attack. GRE is an attack  
payload that became popular with Mirai. 
Before Mirai it was not a common vector.  
It is particularly interesting because of its 
flexibility and velocity, and it can be  
confusing if you haven’t seen it before.

Here are the control parameters of the attack:

FIGURE 8: 
MIRAI CONSOLE 
FOR THE GREIP 
ATTACK		
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CHARACTERISTICS

PROTOCOL: GRE

BANDWIDTH PROFILE:  Profile: High BPS, Medium PPS

PACKET SIZE:  Medium (578 bytes)

NOTES: � �In the wild, this can be a very high PPS attack

THREAT RANKING: 6
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The attack encapsulates a 512-byte payload inside of a GRE packet. By default, the inner packet has a random source and destination IP,  
as well as source and destination ports.

21:12:56.810870 IP 192.168.3.114 > 192.168.3.10: GREv0, length 544: IP 124.209.16.45.13109 > 71.2.185.186.8696: UDP, length 512
21:12:56.811218 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.55994 > 64.218.22.38.45651: UDP, length 512
21:12:56.811567 IP 192.168.3.112 > 192.168.3.10: GREv0, length 544: IP 9.221.112.93.52273 > 161.174.89.139.18817: UDP, length 512
21:12:56.811951 IP 192.168.3.113 > 192.168.3.10: GREv0, length 544: IP 68.60.217.207.37360 > 250.178.96.17.11508: UDP, length 512
21:12:56.812797 IP 192.168.3.114 > 192.168.3.10: GREv0, length 544: IP 124.209.16.45.13003 > 109.94.137.200.53337: UDP, length 
21:12:56.813713 IP 192.168.3.112 > 192.168.3.10: GREv0, length 544: IP 9.221.112.93.24496 > 76.127.227.47.19649: UDP, length 512

Upon closer inspection, the actual source IP address is consistent with the source host. It’s a random IP, but it’s consistently repeated  
by the host. For example, inspect attacker 192.168.3.111. It is sending an encapsulated source IP of 137.112.84.84.

02:16:42.621079 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.47934 > 128.52.8.101.5061: UDP, length 512
02:16:42.621532 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.2930 > 181.88.46.255.61256: UDP, length 512
02:16:42.621988 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.9304 > 34.148.195.229.46077: UDP, length 512
02:16:42.622445 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.10849 > 38.191.235.82.63822: UDP, length 512
02:16:42.622899 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.1102 > 98.196.17.168.2268: UDP, length 512
02:16:42.623356 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.53240 > 74.23.39.146.52563: UDP, length 512
02:16:42.623813 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.46002 > 26.80.150.99.27450: UDP, length 512

Note the control parameters in the CLI screenshot in Figure 8, where you can manipulate the attack. In the example below, we’ve sent an  
inside destination IP to match the outside (192.168.3.10) and we’ve set the destination port to 1234.

19:05:56.577323 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 183.183.1.173.52012 > 192.168.3.10.1234: UDP, length 512
19:05:56.577771 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 183.183.1.173.16397 > 192.168.3.10.1234: UDP, length 512
19:05:56.578219 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 183.183.1.173.47626 > 192.168.3.10.1234: UDP, length 512
19:05:56.578667 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 183.183.1.173.21501 > 192.168.3.10.1234: UDP, length 512
19:05:56.579116 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 183.183.1.173.61218 > 192.168.3.10.1234: UDP, length 512
19:05:56.579565 IP 192.168.3.111 > 192.168.3.10: GREv0, length 544: IP 183.183.1.173.52420 > 192.168.3.10.1234: UDP, length 512
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The control parameters allow specification or randomization of the source IP address, but we find that this doesn’t work correctly.  
Only the first octet is generated and the last three are zeros.

mirai-user@botnet# greip 192.168.3.10 30 source=255.255.255.255

02:22:02.438705 IP 255.0.0.0 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.11402 > 224.87.67.239.62801: UDP, length 512
02:22:02.439158 IP 255.0.0.0 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.11619 > 208.124.252.238.830: UDP, length 512
02:22:02.439614 IP 255.0.0.0 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.49475 > 46.7.80.97.57894: UDP, length 512

mirai-user@botnet# greip 192.168.3.10 30 source=10.20.30.40

02:49:44.780489 IP 10.0.0.0 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.29302 > 204.13.165.8.49989: UDP, length 512
02:49:44.780946 IP 10.0.0.0 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.12716 > 199.86.119.209.4526: UDP, length 512
02:49:44.781402 IP 10.0.0.0 > 192.168.3.10: GREv0, length 544: IP 137.112.84.84.42846 > 46.127.141.138.14333: UDP, length 512

It’s also worth mentioning that the tool used to decode this payload may present it differently. In the examples so far, we have used  
TCPdump for captures. But if you bring a capture into a different protocol analyzer like Wireshark, you might see only the inner packets  
in the summary. Here is an example from Wireshark, which shows the inside packets instead of the outside.

Finally, and most important, it’s an incredibly powerful attack and one of the primary reasons why GRE attacks have been in the news 
since Mirai was released.

FIGURE 9: 
WIRESHARK  
RENDERING OF 
THE GREIP  
ATTACK PAYLOAD 
SHOWING INNER 
PACKET

Remember that GRE is its own  
protocol. If you’re using firewall 
filters or access lists to help identify 
or block the traffic, remember that 
it’s not TCP or UDP, and you might 
need to account for GRE specifically 
in your policy.
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SYN

DNS

The Mirai SYN attack is a classic SYN  
Flood designed to exploit the TCP stack  
of its target. The default parameters are  
to have random source port and random  
destination port, but to be effective, an  
attacker will likely set a target destination 
port when targeting an application.

Here are the control parameters of the attack:

FIGURE 10: 
MIRAI CONSOLE 
FOR THE SYN  
ATTACK		
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CHARACTERISTICS

PROTOCOL: TCP

BANDWIDTH PROFILE:  Moderate BPS, High PPS

PACKET SIZE:  Small (74 bytes)

NOTES: � �Volumetric attributes of attack can overwhelm devices,  
even if they have SYN Flood protection

THREAT RANKING: 5
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Notice the inclusion of the six original TCP control flags (URG, ACK, PSH, RST, SYN and FIN) as attack parameters.  
Attackers have more control and options with the TCP attacks in Mirai. With the most basic syntax, the attack looks like this:

16:05:22.345298 IP 192.168.3.113.12814 > 192.168.3.10.1205: Flags [S], seq 2443004405, win 0, options  
[mss 1415,sackOK,TS val 2843724142 ecr 0,nop,wscale 6], length 0

16:05:22.345504 IP 192.168.3.115.60205 > 192.168.3.10.43834: Flags [S], seq 3654811864, win 0, options  
[mss 1404,sackOK,TS val 742027894 ecr 0,nop,wscale 6], length 0

16:05:22.345708 IP 192.168.3.112.44190 > 192.168.3.10.44009: Flags [S], seq 1531163422, win 0, options  
[mss 1404,sackOK,TS val 194787267 ecr 0,nop,wscale 6], length 0

16:05:22.345916 IP 192.168.3.114.35793 > 192.168.3.10.51112: Flags [S], seq 135361215, win 0, options  
[mss 1408,sackOK,TS val 1457994201 ecr 0,nop,wscale 6], length 0

16:05:22.346123 IP 192.168.3.111.58524 > 192.168.3.10.13939: Flags [S], seq 2866898217, win 0, options  
[mss 1402,sackOK,TS val 1982980123 ecr 0,nop,wscale 6], length 0

Setting the source IP to random does work with this vector.

15:49:22.197799 IP 229.82.235.233.16607 > 192.168.3.10.1469: Flags [S], seq 1991290348, win 0, options  
[mss 1402,sackOK,TS val 1982980123 ecr 0,nop,wscale 6], length 0

15:49:22.197997 IP 156.237.150.25.27113 > 192.168.3.10.36815: Flags [S], seq 3139468395, win 0, options  
[mss 1402,sackOK,TS val 1982980123 ecr 0,nop,wscale 6], length 0

15:49:22.198275 IP 154.172.179.90.7213 > 192.168.3.10.1464: Flags [S], seq 3876991215, win 0, options  
[mss 1402,sackOK,TS val 1982980123 ecr 0,nop,wscale 6], length 0

15:49:22.198485 IP 239.181.99.232.56244 > 192.168.3.10.55042: Flags [S], seq 3440508772, win 0, options  
[mss 1402,sackOK,TS val 1982980123 ecr 0,nop,wscale 6], length 0

15:49:22.198683 IP 46.65.32.169.38110 > 192.168.3.10.19142: Flags [S], seq 2732408244, win 0, options  
[mss 1402,sackOK,TS val 1982980123 ecr 0,nop,wscale 6], length 0

15:49:22.198893 IP 192.53.164.139.16628 > 192.168.3.10.49382: Flags [S], seq 2346537359, win 0, options  
[mss 1402,sackOK,TS val 1982980123 ecr 0,nop,wscale 6], length 0

If filtering out traffic to unused TCP ports, either at the perimeter or at the server itself, a SYN Flood toward random destination  
ports may not be as impactful. It is certainly impactful to unprotected devices. However, remember that even with a random  
destination port SYN Flood, an attacker can still consume upstream resources like internet bandwidth or exhaust PPS limitations.

It is also important to note that SYN Flood protections can still be defeated in many implementations. SYN Floods are designed  
to exhaust a connection table with concurrent connections. It is common for small SYN Floods to defeat traditional firewalls,  
even with SYN Flood protections running on them.

The SYN attack is a very high  
packets per second (PPS) and  
connections per second (CPS)  
attack. Under load, you can expect  
it to exhaust link throughput from  
PPS before it exhausts bits per  
second (BPS). Be sure to monitor  
the PPS rate if you see this attack 
because if you are only monitoring 
BPS, it might appear that you have 
more available bandwidth than you 
actually have.
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ACK

DNS

The Mirai ACK attack is a classic ACK  
Flood, designed to exploit the TCP stack  
of its target. The default parameters are  
to have random source port and random 
destination port, but to be effective, an  
attacker will likely set a target destination 
port when targeting an application.

Here are the control parameters of the attack:

FIGURE 11: 
MIRAI CONSOLE 
FOR THE ACK  
ATTACK		
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CHARACTERISTICS

PROTOCOL: TCP

BANDWIDTH PROFILE:  High BPS, Medium PPS

PACKET SIZE:  Medium (566 bytes)

NOTES: � �1:1 correlation of attacker ACK to target-generated RST  
until target is overwhelmed

THREAT RANKING: 4



02	 MIRAI ATTACK VECTORS

Again, note the inclusion of the six original TCP control flags (URG, ACK, PSH, RST, SYN and FIN) as attack parameters (see Figure 11).  
With the most basic syntax, the attack looks like this.

19:42:56.895246 IP 192.168.3.111.42710 > 192.168.3.10.53757: Flags [.], seq 3568308175:3568308687, ack 2537645519, win 590, length 512
19:42:56.895525 IP 192.168.3.114.19871 > 192.168.3.10.41169: Flags [.], seq 1875737928:1875738440, ack 402782860, win 26807, length 512
19:42:56.895741 IP 192.168.3.112.58193 > 192.168.3.10.49870: Flags [.], seq 1994121555:1994122067, ack 806893676, win 33842, length 512
19:42:56.896020 IP 192.168.3.115.59235 > 192.168.3.10.24840: Flags [.], seq 2782227450:2782227962, ack 597071798, win 9404, length 512
19:42:56.896234 IP 192.168.3.113.51316 > 192.168.3.10.15505: Flags [.], seq 4095646878:4095647390, ack 1047112439, win 61320, length 512

Note that again the target (192.168.3.10) replies with resets (RST) and should theoretically do so at a 1:1 correlation  
until the target is overwhelmed.

19:42:57.336744 IP 192.168.3.10.64016 > 192.168.3.113.41151: Flags [R], seq 1338934557, win 0, length 0
19:42:57.336977 IP 192.168.3.10.63542 > 192.168.3.112.59271: Flags [R], seq 426925092, win 0, length 0
19:42:57.337531 IP 192.168.3.10.30093 > 192.168.3.111.10362: Flags [R], seq 1517995527, win 0, length 0
19:42:57.337758 IP 192.168.3.10.29823 > 192.168.3.114.39888: Flags [R], seq 4215075265, win 0, length 0
19:42:57.338302 IP 192.168.3.10.3589 > 192.168.3.115.29099: Flags [R], seq 2643336227, win 0, length 0

Random source IPs do work with this attack.

19:46:57.595991 IP 98.141.191.54.30758 > 192.168.3.10.49263: Flags [.], seq 1042945450:1042945962, ack 4144566888, win 590, length 512
19:46:57.596308 IP 199.130.219.191.4342 > 192.168.3.10.61216: Flags [.], seq 5913103:5913615, ack 2889137304, win 61320, length 512
19:46:57.596590 IP 210.229.28.44.9331 > 192.168.3.10.10247: Flags [.], seq 1749665412:1749665924, ack 850610110, win 26807, length 512
19:46:57.596806 IP 228.4.78.132.58528 > 192.168.3.10.24469: Flags [.], seq 2111540203:2111540715, ack 174371511, win 9404, length 512
19:46:57.597025 IP 92.149.172.106.43468 > 192.168.3.10.18980: Flags [.], seq 1297054927:1297055439, ack 1118649891, win 33842, length 512

The result is that the attacked host will also send RSTs back to real public IPs.

19:46:57.593114 IP 192.168.3.10.50896 > 183.26.139.111.7712: Flags [R], seq 3686701077, win 0, length 0
19:46:57.593337 IP 192.168.3.10.58711 > 81.112.26.171.21288: Flags [R], seq 691620999, win 0, length 0
19:46:57.593612 IP 192.168.3.10.52558 > 7.22.254.114.38637: Flags [R], seq 3317558542, win 0, length 0
19:46:57.593834 IP 192.168.3.10.44742 > 144.34.26.48.16742: Flags [R], seq 1486491568, win 0, length 0
19:46:57.594057 IP 192.168.3.10.8165 > 157.90.34.180.48681: Flags [R], seq 1155229419, win 0, length 0
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UDP

DNS

The Mirai UDP attack is unique among  
other UDP Floods. While still a UDP Flood, 
the default behavior of Mirai is to randomize 
the source port and the destination ports. 
When combined with multiple source IPs 
(coming from multiple bots), the result is a 
flood of UDP traffic that can be difficult to 
fingerprint on an upstream router or firewall 
because there is no common source IP, 
source port or destination port.

In the lab for this document, the UDP attack performs as expected on the Raspberry Pi 
bots, but when testing a true infection scenario with a real IoT device, it was observed 
that the cameras would crash shortly after execution of the attack. Remember that when 
Mirai devices crash or are rebooted, Mirai is flushed from the device. This might be why 
the UDPPLAIN attack exists too.

Here are the control parameters of the attack:

FIGURE 12: 
MIRAI CONSOLE 
FOR THE UDP  
ATTACK		
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CHARACTERISTICS

PROTOCOL: UDP

BANDWIDTH PROFILE:  High BPS, Moderate PPS

PACKET SIZE:  Medium (554 bytes)

NOTES: � �Attack quickly crashes real IoT camera

THREAT RANKING: 3
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With the most basic syntax, the UDP attack looks like this (but coming from multiple,  
real public IP addresses).

22:52:08.727350 IP 192.168.3.104.63613 > 192.168.3.10.46845: UDP, length 512
22:52:08.727392 IP 192.168.3.102.50744 > 192.168.3.10.2164: UDP, length 512
22:52:08.727438 IP 192.168.3.102.46476 > 192.168.3.10.30461: UDP, length 512
22:52:08.727485 IP 192.168.3.102.16804 > 192.168.3.10.11612: UDP, length 512
22:52:08.727531 IP 192.168.3.102.899 > 192.168.3.10.40079: UDP, length 512

As mentioned earlier, not all variables in the code work properly. For example, when 
specifying a random source IP address, the bots send a source IP of 255.0.0.0.

22:47:08.333547 IP 255.0.0.0.4257 > 192.168.3.10.25548: UDP, length 512
22:47:08.333594 IP 255.0.0.0.23384 > 192.168.3.10.53404: UDP, length 512
22:47:08.333641 IP 255.0.0.0.17972 > 192.168.3.10.23926: UDP, length 512
22:47:08.333686 IP 255.0.0.0.45162 > 192.168.3.10.43349: UDP, length 512
22:47:08.333732 IP 255.0.0.0.60420 > 192.168.3.10.41876: UDP, length 512

Remember that the packet length is adjustable. Modifying the packet length 
is easy during an attack, so don’t rely on it as a manual filter parameter 
unless you must.

T
IP
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UDPPLAIN

DNS

As the name suggests, this is a UDP attack 
that has less options than the other UDP 
attack. The description says that it’s meant 
for higher PPS, and this is observed on 
some of the IoT devices. On the Raspberry 
Pi bots and one brand of camera, this  
behavior was not observed, but on another 
brand of IP camera, this was indeed  
the case.

Using that brand of IP cameras to test, the UDPPLAIN attack was approximately four 
times stronger than the UDP attack in both BPS and PPS.

One reason for this could be the use of a common destination port used for each particular 
attacking bot. By not having to randomize source and destination port, the attacking IoT 
device can apply more resources to the attack itself. Note that a real world attack will still 
have random destination ports, but the IoT devices themselves won’t have to randomize 
them for individual attacks.

Further, it was observed that the UDP attack crashes one model of IP cameras in the lab 
and forces a separation from the botnet. The UDPPLAIN attack might also be a response 
to this behavior.

Here are the control parameters of the attack:

FIGURE 13: 
MIRAI CONSOLE 
FOR THE  
UDPPLAIN  
ATTACK		
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CHARACTERISTICS

PROTOCOL: UDP

BANDWIDTH PROFILE:  High BPS, Medium PPS

PACKET SIZE:  Medium (554 bytes)

NOTES: � �In the wild, it could be high PPS

THREAT RANKING: 2
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With the most basic syntax, the attack looks like this.

19:37:45.420785 IP 192.168.3.113.38601 > 192.168.3.10.25800: UDP, length 512
19:37:45.421015 IP 192.168.3.114.51981 > 192.168.3.10.36867: UDP, length 512
19:37:45.421603 IP 192.168.3.112.1941 > 192.168.3.10.45313: UDP, length 512
19:37:45.421823 IP 192.168.3.111.42962 > 192.168.3.10.56887: UDP, length 512
19:37:45.422033 IP 192.168.3.115.2483 > 192.168.3.10.6558: UDP, length 512

Remember that in random destination port UDP Floods, the server being attacked is  
also typically tasked with generating an ICMP unreachable message when receiving a 
packet on an unopened port.

19:38:20.671766 IP 192.168.3.10 > 192.168.3.111: ICMP 192.168.3.10 udp port 56887 
unreachable, length 548

19:38:20.672451 IP 192.168.3.10 > 192.168.3.113: ICMP 192.168.3.10 udp port 25800 
unreachable, length 548

ICMP messages are generated by the CPU of the device, so even if the device isn’t being 
overwhelmed by BPS or PPS, the task of generating ICMP Unreachable messages can  
also impact it. There are ways to prevent this at the OS level too, so don’t forget to check it.

Finally, similar to the UDP attack, a random source port will appear on an inbound attack 
and a random destination port will appear if the attacker hasn’t modified it. This might be 
difficult to fingerprint and block without the right tools.

I OT AT TAC K H A N D B O O K   |   29

A random source port will appear on  
an inbound attack, and a random  
destination port will appear if the  
attacker hasn’t modified it — making  
it difficult to fingerprint and block  
without the right tools.
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HTTP

DNS

The HTTP attack included in Mirai is  
a highly flexible attack with several  
customizations that could prove difficult  
to defend against without the right tools.  
The most obvious attack to execute  
when you first encounter the tool is an 
HTTP GET attack, which is a traditional  
GET attack.

Here are the control parameters of the attack:

FIGURE 14: 
MIRAI CONSOLE 
FOR THE HTTP 
ATTACK		
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CHARACTERISTICS

PROTOCOL: TCP (HTTP)

BANDWIDTH PROFILE:  Low BPS, Low PPS

PACKET SIZE:  Medium-Small (373 bytes)

NOTES: � �Incredibly versatile for crafted HTTP attacks.  
High amplification factor.

THREAT RANKING: 1
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The console says that the destination port is default random, but this is inaccurate. The default destination port is 
TCP/80. You might notice that there are less parameters in this attack than with the others, but its implementation is 
quite advanced because of the type of attack it is as well as the allowed parameters in the code.

The HTTP Flood is an attack on running applications, so the victim usually cannot simply block TCP/80 traffic. The 
attacker has likely performed reconnaissance on the victim’s network to identify the most effective attack method in the 
HTTP Flood attack.

A traditional GET attack is interesting on its own. In this attack, the attacker simply continues to request legitimate 
HTTP resources repeatedly. The requests come from real IPs that present themselves as real HTTP clients (with five 
legitimate HTTP user agents included in code), and they perform real HTTP requests that the attacker can customize 
from the Mirai console.

The premise of the attack is to exhaust resources on the target, which will continue to serve content to the requestors 
(attackers). The target becomes so busy serving content to the attacking bots that it ultimately cannot serve content 
to legitimate users, thus achieving a denial of service.

There is a very interesting amplification factor in HTTP GET attacks. In the lab, one bot generates 892 Kbps of HTTP 
GETs and corresponding TCP ACKs. However, the web server being attacked generates 19.6 Mbps of traffic back to that 
single bot. That’s a 22x amplification factor with just the default Apache2/Debian “It works” page. A content-rich target 
will suffer from a much higher amplification factor.

With the default syntax, the attack traffic looks like this:

16:36:01.971487 IP 192.168.3.111.39122 > 192.168.3.10.80: Flags [.], ack 22024, win 591, options 
[nop,nop,TS val 50329769 ecr 50327193], length 0

16:36:01.971536 IP 192.168.3.113.58454 > 192.168.3.10.80: Flags [P.], seq 1:302, ack 1, win 229, options 
[nop,nop,TS val 50329466 ecr 50327192], length 301: HTTP: GET / HTTP/1.1

16:36:01.971682 IP 192.168.3.10.80 > 192.168.3.113.58454: Flags [.], ack 302, win 235, options [nop,nop,TS 
val 50327193 ecr 50329466], length 0

16:36:01.972483 IP 192.168.3.10.80 > 192.168.3.113.58454: Flags [.], seq 1:1449, ack 302, win 235, options 
[nop,nop,TS val 50327193 ecr 50329466], length 1448: HTTP: HTTP/1.1 200 OK

16:36:01.972504 IP 192.168.3.10.80 > 192.168.3.113.58454: Flags [.], seq 1449:2897, ack 302, win 235, 
options [nop,nop,TS val 50327193 ecr 50329466], length 1448: HTTP

16:36:01.972565 IP 192.168.3.10.80 > 192.168.3.113.58454: Flags [.], seq 2897:4345, ack 302, win 235, 
options [nop,nop,TS val 50327193 ecr 50329466], length 1448: HTTP

16:36:01.972581 IP 192.168.3.10.80 > 192.168.3.113.58454: Flags [.], seq 4345:5793, ack 302, win 235, 
options [nop,nop,TS val 50327193 ecr 50329466], length 1448: HTTP
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The target becomes so  
busy serving content to  
the attacking bots that it  
ultimately cannot serve  
content to legitimate users,  
thus achieving a denial  
of service.
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Note that the traffic looks exactly like normal HTTP traffic. The following Wireshark 
analysis shows the decoded TCP stream of an HTTP GET attack from a Mirai bot.

FIGURE 15: 
WIRESHARK  
RENDERING OF  
A MIRAI HTTP  
GET ATTACK		
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Notice the HTTP user agent included in Figure 15. The default Mirai code includes five 
user agents, which can be presented in an attack.

Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/51.0.2704.103 Safari/537.36

Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/52.0.2743.116 Safari/537.36

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/51.0.2704.103 Safari/537.36

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/52.0.2743.116 Safari/537.36

Mozilla/5.0 (Macintosh; Intel Mac OS X 10 _ 11 _ 6) AppleWebKit/601.7.7  
(KHTML, like Gecko) Version/9.1.2 Safari/601.7.7

So far only one type of HTTP attack has been reviewed, which is likely the most basic 
with the least amount of input from the user. However, it’s important to understand the 
precision that is granted to an attacker using the tool. 

Another interesting attack in the HTTP vector is an HTTP POST, which is invoked  
using the “method=” parameter from the Mirai console. Although HTTP GET attacks  
are designed to pull static content from web servers, the HTTP POST attack is intended 
to abuse the use of forms or input fields on a website. 

The result of the HTTP POST attack will also depend on the system being attacked,  
but the source will be the same — real devices emulating real HTTP clients with a  
custom POST that the attacker likely crafted specifically for his/her victim.

Finally, there is another interesting technique involving this attack vector. The most 
common HTTP Method attacks are GET and POST, but the rest of the HTTP methods 
can be easily exploited. The result is a CPU impact rather than network bandwidth 
exploitation.

For example, in an HTTP DELETE attack, the target replies to the attackers with an HTTP 
405/Method Not Allowed message. The processing of this request can be CPU intensive, 
so although the attack is not volumetric in nature, the impact on the CPU is notable. 
Below you can see the CPU utilization of the target (a small server with four cores) when 
the HTTP Method abuse attack is launched from five lab bots.

As you can see, the HTTP attack in Mirai can be used to deliver not only traditional GET 
attacks but also complex, precision-targeted HTTP attacks.

Defending against the HTTP attacks will prove incredibly difficult without the right tools.  
A NetFlow-based DDoS solution might detect an anomaly in traffic, but it won’t be able to 
easily separate legitimate traffic from attack traffic because it’s all real traffic at OSI Layers 
3–4. Similarly, a router ACL or firewall policy won’t be able to isolate only bad traffic. 

FIGURE 16: 
OBSERVIUM  
CE GRAPH OF  
TARGET CPU 
DURING A MIRAI 
HTTP DELETE 
ATTACK		
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03	

Attacks Included  
in Mirai Variants



With a proven framework, Mirai was leveraged by attackers seeking to create their  
own custom variants. 
 
For example, Masuta and DaddysMirai include the original Mirai vectors but removed  
the HTTP attack.

#define ATK _ VEC _ UDP 0

#define ATK _ VEC _ VSE 1

#define ATK _ VEC _ DNS 2

#define ATK _ VEC _ SYN 3

#define ATK _ VEC _ ACK 4

#define ATK _ VEC _ STOMP 5

#define ATK _ VEC _ GREIP 6

#define ATK _ VEC _ GREETH 7

#define ATK _ VEC _ UDP _ PLAIN 8

Orion is an exact copy of the original Mirai attack table (and, just like Mirai, has abandoned 
the PROXY attack).

#define ATK _ VEC _ UDP        	 0  /* Straight up UDP flood */

#define ATK _ VEC _ VSE        	 1  /* Valve Source Engine query flood */

#define ATK _ VEC _ DNS        	 2  /* DNS water torture */

#define ATK _ VEC _ SYN        	 3  /* SYN flood with options */

#define ATK _ VEC _ ACK        	 4  /* ACK flood */

#define ATK _ VEC _ STOMP      	 5  /* ACK flood to bypass mitigation devices */

#define ATK _ VEC _ GREIP      	 6  /* GRE IP flood */

#define ATK _ VEC _ GREETH     	 7  /* GRE Ethernet flood */

//#define ATK _ VEC _ PROXY     	 8  /* Proxy knockback connection */

#define ATK _ VEC _ UDP _ PLAIN 	 9  /* Plain UDP flood optimized for speed */

#define ATK _ VEC _ HTTP     	10 /* HTTP layer 7 flood */

Owari added two new vectors, STD and XMAS.

#define ATK _ VEC _ UDP        	 0

#define ATK _ VEC _ VSE        	 1

#define ATK _ VEC _ DNS        	 2

#define ATK _ VEC _ SYN       	 3

#define ATK _ VEC _ ACK       	 4

#define ATK _ VEC _ STOMP     	 5

#define ATK _ VEC _ GREIP     	 6

#define ATK _ VEC _ GREETH    	 7

#define ATK _ VEC _ UDP _ PLAIN  8

#define ATK _ VEC _ STD       	 9

#define ATK _ VEC _ XMAS     	10

3	 ATTACKS INCLUDED IN MIRAI VARIANTS
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STD

DNS

The STD attack is a new attack vector  
that appears in Owari. It is a replica of  
the Mirai UDPPLAIN attack except that  
it defaults to a packet length of 1,024  
bytes instead of 512 bytes.

In the Owari variant tested for this research, the console appears as follows:

FIGURE 17: 
OWARI  
CONSOLE FOR 
THE STD  
ATTACK		

I OT AT TAC K H A N D B O O K   |   36

3	 ATTACKS INCLUDED IN MIRAI VARIANTS

CHARACTERISTICS

PROTOCOL: UDP

BANDWIDTH PROFILE:  High BPS, Medium PPS

PACKET SIZE:  Large (1,024 bytes)

NOTES: � �Nearly identical to Mirai UDPPLAIN but larger payload

THREAT RANKING:  NOT CALCULATED
	� SAME PROFILE AS MIRAI’S UDPPLAIN 

IF PACKET LENGTH IS SET
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The console states that the default packet length is 512 bytes, but this is incorrect.  
The default packet length is 1,024 bytes.

Also like Mirai’s UDPPLAIN attack, the source and destination ports are random per flow. 
They are not random per packet like a UDP attack. On the wire, the attack looks like this 
when launched with the most basic syntax:

04:19:03.092763 IP 192.168.3.101.41615 > 192.168.3.10.38509: UDP, length 1024
04:19:03.093225 IP 192.168.3.100.63537 > 192.168.3.10.8420: UDP, length 1024
04:19:03.093674 IP 192.168.3.101.41615 > 192.168.3.10.38509: UDP, length 1024
04:19:03.094123 IP 192.168.3.100.63537 > 192.168.3.10.8420: UDP, length 1024
04:19:03.094573 IP 192.168.3.101.41615 > 192.168.3.10.38509: UDP, length 1024
04:19:03.095023 IP 192.168.3.100.63537 > 192.168.3.10.8420: UDP, length 1024

This attack is not given a threat ranking score because it was run on IP cameras instead 
of Raspberry Pis, for reasons described earlier. However, the relevant code of this attack 
matches the Mirai UDPPLAIN attack, so if the packet length is set to 1,024 bytes upon 
execution, the behavior will be the same.

The console states that the default packet 
length is 512 bytes, but this is incorrect. 
The default packet length is 1,024 bytes.

3	 ATTACKS INCLUDED IN MIRAI VARIANTS



XMAS

The XMAS attack is the other new attack 
that appears in the Owari variant of Mirai, 
and it is interesting for several reasons. 
Most importantly, every sample of code  
that Radware observed in the wild had  
an error for this attack.

The attack that was launched from the bots was not the XMAS attack, it was the STD 
attack. This is a simple error by its author, but the error has propagated into other public 
variants of Owari. Fixing the mistake produces the correct attack.

The XMAS attack is a Christmas tree attack. In a Christmas tree attack, many different 
TCP flags are enabled, and the etymology of the name is that the packet is illuminated 
like a Christmas tree. In the case of Owari, every TCP flag except ECN-nonce is set.

FIGURE 18: 
WIRESHARK  
RENDERING OF 
TCP FLAGS SET  
IN THE OWARI 
XMAS ATTACK
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3	 ATTACKS INCLUDED IN MIRAI VARIANTS

CHARACTERISTICS

PROTOCOL: TCP

BANDWIDTH PROFILE:  High BPS, Low PPS

PACKET SIZE:  822 BYTES

NOTES: � �Sets invalid TCP flag combinations, creating malformed 
packets

THREAT RANKING: NOT CALCULATED
	� SIMILAR THROUGHPUT PROFILE  

AS MIRAI’S STOMP ATTACK



The attack is also an in-session attack, meaning that the three-way handshake is established 
before the XMAS Flood begins. The flood will not begin unless the three-way handshake 
is established, so the attacker will likely target an open TCP port on its victim.

In the Owari variant tested for this research, the console appears as follows:

The flood will be volumetric in nature, but the payload of the flood is a malformed packet. 
There are techniques to mitigate this problematic traffic, such as blocking packet anomalies, 
but remember that an attack will likely also be volumetric in nature, and it can saturate a 
network.

This attack is not given a threat ranking score because it was run on IP cameras instead 
of Raspberry Pis, for reasons described earlier.

FIGURE 19: 
WIRESHARK  
RENDERING OF 
THE OWARI  
XMAS ATTACK 
SETUP

FIGURE 20: 
OWARI CONSOLE 
FOR THE XMAS 
ATTACK
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Burst Attacks



Burst attacks are a unique challenge for the victim  
to detect and mitigate without the right tools.

04	 BURST ATTACKS

The attack is more of an implementation or technique 
than a vector and as such, can be used with many 
types of attack vectors. In fact, this is one of its 
strength because changing something about the  
attack in each wave makes it even more difficult to  
defend against.

IoT botnets like Mirai have made burst attacks more prevalent today than in the past. In 
the case of Mirai, the attacker has precision control — down to the second — of what an 
attack will look like. Each burst or wave can be configured to be slightly different, causing 
chaos for the victim who is not properly protected.
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For example, let’s say that the victim has received a 5 Gbps burst of a UDP Flood toward 
his/her DNS server that lasted 30 seconds. Let’s assume that it was detected on the  
first burst and perhaps was identified as a UDP Flood toward destination port 53 with a 
packet length of 512 bytes. With a manual mitigation technique, an engineer must create 
a filter to block this exact attack.

15:00:15.265411 IP 192.168.3.111.29101 > 192.168.3.10.53: UDP, length 512
15:00:15.265869 IP 192.168.3.112.11428 > 192.168.3.10.53: UDP, length 512
15:00:15.266324 IP 192.168.3.115.46810 > 192.168.3.10.53: UDP, length 512
15:00:15.266777 IP 192.168.3.114.37522 > 192.168.3.10.53: UDP, length 512
15:00:15.267304 IP 192.168.3.113.34235 > 192.168.3.10.53: UDP, length 512

The danger becomes apparent when the next burst has a slightly modified payload. 
Maybe the attacker has changed the packet length to 520 bytes, or the destination port 
or another parameter. When this happens, the engineer defending against the attack 
must manually create a new filter to block the new attack.

15:09:35.898311 IP 192.168.3.111.45248 > 192.168.3.10.53: UDP, length 520
15:09:35.898766 IP 192.168.3.114.60616 > 192.168.3.10.53: UDP, length 520
15:09:35.899220 IP 192.168.3.112.64291 > 192.168.3.10.53: UDP, length 520
15:09:35.899675 IP 192.168.3.115.35316 > 192.168.3.10.53: UDP, length 520
15:09:35.900133 IP 192.168.3.113.54531 > 192.168.3.10.53: UDP, length 520

In reality, by the time the defender has manually created a new signature, the attacker  
is several steps ahead with new rounds of the attack. And when the attack comes from 
real IPs from thousands of real IoT devices, the problem of filtering is exacerbated.Now 
consider a more common, real-world scenario. Most networks don’t collect NetFlow 
information or have DDoS mitigation tools on-premise. Maybe they track network utiliza-
tion with SNMP graphs. The trouble is that SNMP polling is only done at predetermined 
intervals, usually every three to five minutes depending on the implementation. 

Unless an attack lasts for the duration of two complete polling cycles, any data represented 
in graphs will be incorrect. You might see some of the traffic depending on its duration, 
but interface utilization statistics are usually the average of counters between the polling 
period. If that attack is a short burst on a large interface, the traffic represented in the 
graph will be much smaller than it actually was.

The attack will more likely manifest itself as intermittent connectivity loss, application 
problems or sometimes even firewall failovers if the network is fronted by high-availability 
firewall pairs. The application team will ask the network team what’s wrong, but the net-
work team will likely say “the network looks fine.” By the time the victim realizes what’s 
happening, the attack vector is already underway and is incredibly difficult to defend 
against without the right tools.

The following graph shows a recent burst attack campaign on a Radware customer 
spanning 10 hours.

FIGURE 21: 
NETWORK 
GRAPHS OF A 
REAL BURST  
ATTACK
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With the ability to precisely control many different types of attacks, Mirai creates a 
challenge in defending networks without the proper tools.

04	 BURST ATTACKS
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Defense and Onward



Mirai forever changed the security threat landscape.  
The early attacks from the botnet were monumental,  
and the subsequent release of the code has inspired  
threat actors to push the envelope even further.

It’s important to understand the capabilities of Mirai  
and other IoT botnets so that your organization can  
truly comprehend the threat. 

Manually reacting to these attacks is not viable, especially in a prolonged campaign. 
In many cases, it is possible to block some of these attacks on infrastructure devices 
such as core routers or upstream transit links, but in many cases it’s not. Hopefully,  
this handbook provides the guidance and insight needed for each vector in the event  
that your organization ever needs to take emergency measures.

Effectively fighting these attacks requires specialized solutions, including behavioral 
technologies that can identify the threats posed by Mirai and other IoT botnets. It  
also requires a true understanding of how to successfully mitigate the largest attacks 
ever seen.

Radware offers industry-leading solutions to successfully mitigate these attacks,  
including premise-based hardware, cloud-based services and hybrid architectures.  
To learn more, visit Radware.com.

05	 DEFENSE AND ONWARD
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APPENDIX A: MIRAI ATTACK RATES

Mirai Attack Velocity from Five Raspberry Pi Bots

Attack Protocol Packet Size BPS PPS

DNS UDP 93 158,795,184 225,559

VSE UDP 67 126,300,112 222,357

STOMP TCP 822 488,183,616 73,877

GREETH GRE 592 483,750,656 101,458

GREIP GRE 578 483,389,312 103,821

SYN TCP 74 132,103,360 211,704

ACK TCP 566 483,049,408 105,934

UDP UDP 554 482,700,896 108,133

UDPPLAIN UDP 554 452,440,448 101,352

HTTP TCP (APP) 373 3,664,168 2,277
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